

Grid Modernization and the 2007 Energy Independence and Security Act

Eric Hsieh

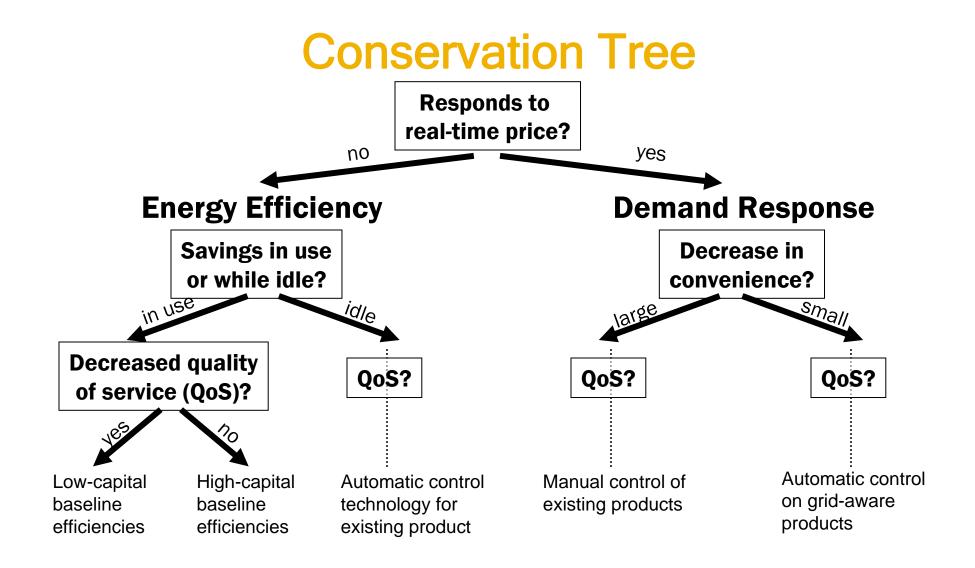
Government Relations Manager National Electrical Manufacturers Association CMU Future Energy Systems March 10, 2008

Outline

Uncertainties in electricity systems

- Role of the IT and smart grid
- EISA 2007 provisions for grid modernization

Adapting to Uncertainties


- Beyond N-1 operations or planning
- Factors that could change dispatch patterns:
 - Renewable portfolio standards
 - Rapid decrease in photovoltaic costs
 - Loss of renewable production tax credits
 - Breakthrough in energy storage systems
- Today's infrastructure must adapt to tomorrow's changes
- Start with measures to conserve energy

Smart Grid: IT-Enabled Conservation

Types of Energy Conservation

- Baseline
- Opportunistic
- Behavioral
- Differentiating Characteristics
 - Is their a behavioral change in response to price?
 - Is their a decrease in consumer ease of use?
 - When do savings accrue?
 - Is there a decrease in the quality of service?

Smart Grid: Adaptability

- Renewables integration
 - Containing stresses from intermittent sources
 - New controls for energy storage
 - Dynamic transmission ratings
- Load participation
 - Demand response enabled by AMI
 - Potential for new types of rates (e.g. "green only")

Smart Grid Enablers and Barriers

Enablers

- Decreasing cost of computing power
- Increasing cost of energy
- Need for infrastructure upgrades

Barriers

- Unwillingness to pay even more for energy capital
- Implementation scale and integration
- Outdated retail market structures

Removing Smart Grid Barriers

Energy Independence and Security Act of 2007

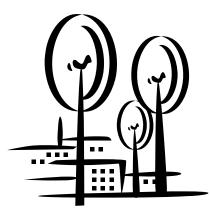
Smart Grid and Energy Storage Technology

- Basic and Applied Research
- Developments and Demonstrations
- Standards and Protocols
- Incentives for deployment

PURPA amendments for regulatory incentives

Smart Grid Research and Development

- R&D program at the Dept. of Energy
- Expanding market structures...
 - Ancillary services
 - Real-time pricing
- …through new technologies
 - Smart meters, and demand response
 - Distributed generation
 - Energy storage
 - Data mining, visualization, algorithms
 - Vehicle-to-grid interconnections
- No specific amount specified

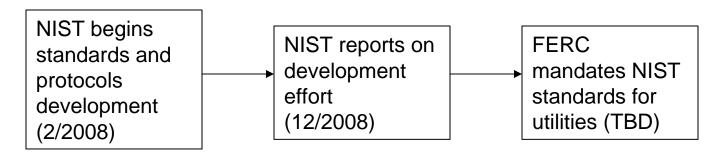

Energy Storage Research and Development

- Another R&D program at the Dept. of Energy
- Basic
 - Underlying battery materials
 - Up to \$80m annually for 10 years
- Applied
 - Ex.: flywheels, compressed air, ultracapacitors
 - Up to \$80m annually for 10 years
- Research Centers
 - Move basic research to applied technologies
 - Up to \$100m annually for 10 years
- Similar programs for solar, tidal, geothermal

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION

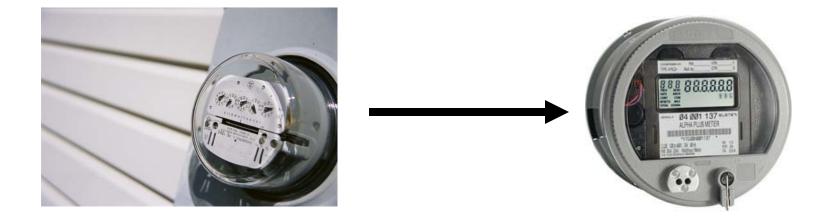
Demonstration Projects

- Common Goals
 - Reliability
 - Peak shaving
 - Transmission and renewables optimization
- Utility and Vehicle Energy Storage
 - Partner with utilities, manufacturers, academia
 - Up to \$60m annually for 10 years (two \$30m programs)
- Smart Grid Demonstration Projects
 - Deployed in up to five control areas
 - Up to \$100 million annually over five years
 - 50% cost match for advanced technology differential



National Smart Grid Standards

- Potential reduction in integration costs
- National Institute of Standards and Technology
 - Leads development of protocols and standards
 - Must be flexible, uniform, technology neutral
 - From generators to appliances
- Open Process
 - Stakeholders include IEEE, GWAC, NERC, NEMA, others
 - Should incorporate existing groups


Smart Grid Investment Match

- Up to 20% of smart grid costs
 - For manufacturers: cost of integrating smart grid functions
 - For utilities: additional cost of smart grid devices
- Equipment must follow NIST standards
- DOE to issue rules by December 2008

State-Level Smart Grid Incentives

- Public Utility Regulatory Policy Act amendments
- Cost recovery for utility smart grid investment
 - Accelerated depreciation for obsolete equipment
 - Consideration of cost-effectiveness, reliability, societal benefit
- Provide hourly price information to retail customers

Looking Ahead

PURPA AMI amendments great, but

- Marginal increase in AMI dockets, if any
- Potential for conflicting requirements across states
- Need to avoid closed, interim solutions
- Matching funds welcome, but
 - New transmission capacity still needed
 - Need solutions to siting and cost allocation
- R&D programs exactly what industry needs, but
 - Programs need to be funded
 - Pay-go rules restricts options

Conclusion

- EISA 2007 provides a roadmap for cyberphysical systems integration
 - Recognition of the IT role in energy
 - R&D→Demos→Standards→Incentives
 - Will help grid adapt to changes
 - Will help utilities plan with more certainty
- Needs careful implementation
 - Uniform implementation to ease manufacturing
 - Authorized programs need funding